Abstract

Activated carbons (ACs) are widely applied in the removal of volatile organic compounds (VOCs) emitted from industrial processes, because of their high adsorption capacity, low cost and reusability. Their poor thermal stability under oxidative conditions is a limiting factor and often leads to fire risk in real applications. Here, Si-modification was performed over a wood-derived AC material, and a series of modified ACs with different Si/C mass ratios (0.1–0.9) were prepared via a hydrothermal route. Physicochemical characteristics of Si/C samples was examined by XRD, SEM, TEM, XPS, FTIR and N2-physisorption measurements. As compared to pristine AC, Si-modified ACs showed enhanced fire resistance, and an increase of ignition temperature by 79 ℃ was achieved at a Si/C mass ratio of 0.9. A combination of TEM, XPS and FTIR characterization suggests that the formation of amorphous SiO2 nanoparticles and SiC species on the surface was responsible for the enhanced fire resistance of Si-modified ACs. By increasing microporosity, Si-modification also significantly improved the adsorption capacity of toluene as a model VOC molecule. Static and dynamic adsorption experiments were performed to understand the adsorption kinetics of the Si-modified ACs. Reusability tests showed that the desorption rate of the modified AC remained at nearly 80% even after five cycles of repeated adsorption-desorption, indicating that the modified AC has a great potential for industrial applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call