Abstract

Acidic H2O2 synthesis through electrocatalytic 2e- oxygen reduction presents a sustainable alternative to the energy-intensive anthraquinone oxidation technology. Nevertheless, acidic H2O2 electrosynthesis suffers from low H2O2 Faradaic efficiencies primarily due to the competing reactions of 4e- oxygen reduction to H2O and hydrogen evolution in environments with high H+ concentrations. Here, we demonstrate the significant effect of alkali metal cations, acting as competing ions with H+, in promoting acidic H2O2 electrosynthesis at industrial-level currents, resulting in an effective current densities of 50-421 mA cm-2 with 84-100 % Faradaic efficiency and a production rate of 856-7842 μmol cm-2 h-1 that far exceeds the performance observed in pure acidic electrolytes or low-current electrolysis. Finite-element simulations indicate that high interfacial pH near the electrode surface formed at high currents is crucial for activating the promotional effect of K+. In situ attenuated total reflection Fourier transform infrared spectroscopy and ab initio molecular dynamics simulations reveal the central role of alkali metal cations in stabilizing the key *OOH intermediate to suppress 4e- oxygen reduction through interacting with coordinated H2O.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.