Abstract

Residual antibiotics in wastewater have gained widespread attention because of their toxicity to humans and the environment. In this work, Cu-doped ZIF-8s (Cu-ZIF-8s) were successfully synthesized by the impregnation of Cu2+ in ZIF-8 and applied in the removal of ofloxacin (OFX) from water. Remarkably, excellent adsorption performance was obtained in Cu-ZIF-8s, especially for Cu-ZIF-8-1, in which the adsorption capacity (599.96 mg·g−1) was 4.2 times higher than that of ZIF-8 and superior to various adsorbents reported previously. The adsorption kinetics and adsorption isotherm follow the pseudo-second-order model and the Langmuir model, respectively. Furthermore, the removal efficiencies of OFX in Cu-ZIF-8-1 reached over 90% at low concentrations. It was revealed that electrostatic interaction and complexation play important roles in the adsorption process. In addition, the material can be regenerated by simple methods. Therefore, the obtained Cu-doped MOFs may have a promising application in the treatment of antibiotic-containing wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call