Abstract

In this paper, we report a new molecular architecture for increasing the emission efficiency of nicotinonitrile-derivatives-based donor-acceptor-donor combined thermally activated delayed fluorescence (TADF) emitters with asymmetric molecular architecture. The proposed molecular design facilitates highly effective TADF emission through a relatively small singlet (S1) and triplet (T1) energy gap (ΔEST ≈ 0.1 eV) and provides an increased reverse intersystem crossing efficiency (ΦRISC) of up to 86% from T1 to S1 states. Organic light-emitting diodes (OLEDs) employing the proposed asymmetric nicotinonitrile derivatives as emitters exhibit external quantum efficiencies (ηext) of up to 18.5% in greenish-blue and green emissions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.