Abstract

Nickel sulfide (NiS) thin film has been deposited on a fluorine-doped tin oxide substrate by a hydrothermal method using 3-mercaptopropionic acid and used as an efficient counter electrode (CE) for polysulfide redox reactions in quantum dot-sensitized solar cells (QDSSCs). NiS has low toxicity and environmental compatibility. In the present study, the size of the NiS nanoparticle increases with the hydrothermal deposition time. The performance of the QDSSCs is examined in detail using polysulfide electrolyte with the NiS CE. A TiO2/CdS/CdSe/ZnS-based QDSSC using the NiS CE shows enhanced photovoltaic performance with a power conversion efficiency (PCE) of 3.03%, which is superior to that of a cell with Pt CE (PCE 2.20%) under one sun illumination (AM 1.5, 100 mW cm−2). The improved photovoltaic performance of the NiS-based QDSSC may be attributed to a low charge transfer resistance (5.08 Ω) for the reduction of polysulfide on the CE, indicating greater electrocatalytic activity of the NiS. Electrochemical impedance spectroscopy, cyclic voltammetry, and Tafel-polarization measurements were used to investigate the electrocatalytic activity of the NiS and Pt CEs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call