Abstract

A solar evaporator that utilizes solar radiation energy can be a renewable approach to deal with energy crisis and fresh water shortage. In this study, a solar evaporator was prepared by assembling composite carbonized wood of Melaleuca Leucadendron L. and biobased hydrogel. The multilayer MXene (Ti3C2Tx) was embedded in the scaffolding structure of the wood to form composite carbonized wood, where the loose and ordered scaffolding structure of the carbonized wood significantly improves the efficiency of water transportation with increased capillary force. The MXene adsorbed in the carbonized wood has high binding energy with water molecules, leading to reduction of vaporization enthalpy and contact angle. Moreover, the addition of MXene can improve the light absorbance, especially for the infrared and ultraviolet light bands. The hydrogel was fabricated by crosslinking konjac glucomannan and sodium alginate polysaccharides with Ca2+, and it has a lower thermal conductivity than water and improves the evaporation efficiency by regulating the temperature distribution and concentrating the heat on the surface of the evaporator. This solar evaporator has an evaporation rate of 3.71 kg·m-2·h-1 and an evaporation efficiency of 129.64% under 2 sun illumination and is available to generate an open-circuit voltage of 1.8 mV after a 20 min hydrovoltaic, demonstrating a high performance and versatility. Also, experiments and numerical simulation were carried out to understand the mechanism and design principles of this solar evaporators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call