Abstract

Discrete wavelet transform (DWT) is widely used in the tasks of signal processing, analysis and recognition. Moreover it’s practical applications are not limited to the case of one-dimensional signals but also apply to images and multidimensional data. From the moment of introduction of the dedicated libraries that enable to use graphics processing units (GPUs) for mass-parallel general purpose calculations the development of effective GPU based implementations of one-dimensional DWT is an important field of scientific research. It is also important because with use of one-dimensional procedure we can calculate DWT in multidimensional case if only the transform’s separability is assumed. In this paper the authors propose a novel approach to calculation of one-dimensional DWT based on lattice structure which takes advantage of shared memory and registers in order to implement necessary inter-thread communication. The experimental analysis reveals high time-effectiveness of the proposed approach which can be even 5 times higher for Maxwell architecture, and up to 2 times for Turing family GPU cards, than the one characteristic for the convolution based approach in computational tasks that can be classified as big-data problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call