Abstract

We demonstrate the use of a highly effective biosensor array to fulfill the requirements of high intensity, reduced nonspecific adsorption (NSA), and low sample usage. The mixed self-assembled monolayers (SAMs), consisting of methyl-terminated and methoxy-(polyethylene glycol (PEG))-terminated silanes, were newly applied as the background layer to reduce the background NSA via wettability control. The surface was modified by a plasma process with a pattern mask. Gold nanoparticles (AuNPs) were grafted within pattern-modified regions to increase intensity and were modified with protein G variants with cysteine residues to immobilize the antibody proteins directly. The target protein samples were selectively dewetted by the high throughput wiping process, while retaining semi-contact with the substrate. The data revealed that the background NSA was significantly reduced by 78% with selective dewetting compared to the standard method. Furthermore, the peak intensity was improved 5 times by applying AuNPs as compared to that of a planar surface, and the protein requirement was significantly reduced versus the standard process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.