Abstract

Copper-based hydrogen evolution electrocatalysts are promising materials to scale-up hydrogen production due to their reported high current densities; however, electrode durability remains a challenge. Here, we report a facile, cost-effective, and scalable synthetic route to produce Cu2-xS electrocatalysts, exhibiting hydrogen evolution rates that increase for ∼1 month of operation. Our Cu2-xS electrodes reach a state-of-the-art performance of ∼400 mA cm-2 at -1 V vs RHE under mild conditions (pH 8.6), with almost 100% Faradaic efficiency for hydrogen evolution. The rise in current density was found to scale with the electrode electrochemically active surface area. The increased performance of our Cu2-xS electrodes correlates with a decrease in the Tafel slope, while analyses by X-ray photoemission spectroscopy, operando X-ray diffraction, and in situ spectroelectrochemistry cooperatively revealed the Cu-centered nature of the catalytically active species. These results allowed us to increase fundamental understanding of heterogeneous electrocatalyst transformation and consequent structure-activity relationship. This facile synthesis of highly durable and efficient Cu2-xS electrocatalysts enables the development of competitive electrodes for hydrogen evolution under mild pH conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.