Abstract
Tuning the natural frequency of a resonator is an innovative approach for the implementation of mechanical resonators in a broad range of fields such as timing applications, filters or sensors. The conventional electrothermal technique is not favorable towards large tuning range because of its reliance on metallic heating elements. The use of metallic heaters could limit the tuning capability due to the mismatch in thermal expansion coefficients of materials forming the resonator. To solve this drawback, herein, the design, fabrication, and testing of a highly-doped SiC bridge resonator that excludes the use of metallic material as a heating element has been proposed. Instead, free-standing SiC structure functions as the mechanical resonant component as well as the heating element. Through the use of the Joule heating effect, a frequency tuning capability of almost ∆f/fo ≈ 80% has been demonstrated. The proposed device also exhibited a wide operating frequency range from 72.3 kHz to 14.5 kHz. Our SiC device enables the development of highly sensitive resonant-based sensors, especially in harsh environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.