Abstract

Myrionecta rubra and Mesodinium pulex are among the most commonly encountered planktonic ciliates in coastal marine and estuarine regions throughout the world. Despite their widespread distribution, both ciliates have received little attention by taxonomists. In order to understand the phylogenetic position of these ciliates better, we determined the SSU rRNA gene from cultures of M. rubra and M. pulex. Partial sequence data were also generated from isolated cells of M. rubra from Chesapeake Bay. The M. rubra and M. pulex sequences were very divergent from all other ciliates, but shared a branch with 100% bootstrap support. Both species had numerous deletions and substitutions in their SSU rRNA gene, resulting in a long branch for the clade. This made the sequences prone to spurious phylogenetic affiliations when using simple phylogenetic methods. Maximum likelihood analysis placed M. rubra and M. pulex on the basal ciliate branch, following the removal of ambiguously aligned regions. Fluorescent in situ hybridization probes were used with confocal laser scanning microscopy to confirm that these divergent sequences were both expressed in the cytoplasm and nucleolus of M. rubra and M. pulex. We found that our sequence data matched several recently discovered unidentified eukaryotes in Genbank from diverse marine habitats, all of which had apparently been misattributed to highly divergent amoeboid organisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.