Abstract

Chalcogenides with diamond-like (DL) structures are a treasury of infrared nonlinear optical (NLO) materials. Here, a ternary Hg-based chalcogenide with a defect DL structure, Hg3P2S8, is synthesized by solid-state reaction. Driven by the highly distorted [HgS4] tetrahedra, this compound displays an interesting structural symmetry degradation from tetragonal to orthorhombic compared with its analogue Zn3P2S8. Meanwhile, the overall performances of Hg3P2S8 are quite remarkable, including a very strong phase-matchable second-harmonic generation (SHG) response (4.2 × AgGaS2), large band gap (2.77 eV), wide IR transparent range (0.45-16.7 μm), and high laser-induced damage threshold (4 × AGS). Furthermore, the theoretical analysis and local dipole moment calculations elucidate that the highly distorted [HgS4] tetrahedra contribute a lot to the enhancement of the SHG effect. This discovery will motivate the exploration of other DL Hg-based chalcogenides serving as high-performing mid-IR NLO materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.