Abstract

Transition metal oxides used as electrode materials for flexible supercapacitors have attracted huge attention due to their high specific capacitance and surface-to-volume ratio, specifically for cobalt oxide (Co3O4) nanoparticles. However, the low intrinsic electronic conductivity and aggregation of Co3O4 nanoparticles restrict their electrochemical performance and prevent these electrode materials from being commercialized. Herein, a facile, advantageous, and cost effective sol-gel synthetic route for growing Co3O4 nanoparticles uniformly over a low cost and eco-friendly one-dimensional (1D) hydrophilic cellulose nanofiber (CNF) surface has been reported. This exhibits high conductivity, which enables the symmetric electrode to deliver a high specific capacitance of ∼214 F g-1 at 1 A g-1 with remarkable cycling behavior (∼94% even after 5000 cycles) compared to that of pristine CNF and Co3O4 electrodes in an aqueous electrolyte. Furthermore, the binder-free nature of 1D Co3O4@CNF (which was carbonized at 200 °C for about 20 min under a H2/Ar atmosphere) shows great potential as a hybrid flexible paper-like electrode and provides a high specific capacitance of 80 F g-1 at 1 A g-1 with a superior energy density of 10 W h kg-1 in the gel electrolyte. This study provides a novel pathway, using a hydrophilic 1D CNF, for realizing the full potential of Co3O4 nanoparticles as advanced electrode materials for next generation flexible electronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.