Abstract

Titania (TiO2) supported iron oxides (Fe-TiO2) are ideal catalysts to be applied in heterogeneous photo-Fenton oxidation (HPFO) for wastewater treatment because of the capabilities of TiO2 in photocatalysis and iron oxides in interfacial H2O2 activation. It is important to understand the influences of the structural parameters of Fe-TiO2 catalysts and the complicated interplay between TiO2 and iron oxides on the performance of HPFO. In this paper, a series of Fe-TiO2 catalysts are obtained through a facile solid-phase synthesis method. The iron loading content and the calcination temperature are systematically adjusted to tune the crystal phase, size, anatase/rutile ratio and density of oxygen vacancy (OV) site of TiO2, the dispersing state of iron species, and the interfacial structure of the Fe-TiO2 catalysts. Then, the performance of these catalysts in HPFO for degrading methylene blue (MB) are comparatively studied. Correlations between the performance and various structural properties of the catalysts are clarified. The interplay between TiO2 and iron oxides in the HPFO process is elucidated. The insight reaction mechanism is also discussed. Under optimized conditions (an iron loading of 1 wt% and a temperature of 600 °C), Fe-TiO2 catalysts with iron lattice doping, well-dispersed ultrasmall α-Fe2O3 nanoparticles, appropriate anatase/rutile ratios and abundant OV sites can be obtained. The anatase-rutile-Fe2O3 heterojunction, ultrasmall α-Fe2O3 nanoparticles and OV sites in the optimized catalysts work synergistically to improve the charge migration and interfacial activation of H2O2, leading to superior HPFO performance for MB degradation and mineralization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call