Abstract

BackgroundSulfadiazine (SDZ) is a broad-spectrum antibiotic widely used in aquaculture and animal husbandry and it is easy to remain in the water system to damage the human body. Therefore, detection and removal of sulfadiazine in water systems become critical. Nowadays, catalysts and visible light are used to degrade sulfadiazine into smaller molecules containing N and S to reduce toxicity. However, these small molecules are easily released into water and the atmosphere to be the acid rain. Therefore, it is urgent to design a sensor with the ability to detect and remove SDZ at the same time. (96) ResultsWe designed a novel composite catalyst sensor (Sb6O13@LTA GCE) with the ability to simultaneously monitor and remove sulfadiazine. The catalyst is generated by introducing SbCl5 into the reactive gel of LTA (Linde Type A) structure zeolite. In the hydrothermal reaction, the corrosive SbCl5 is transferred into nanosized Sb6O13 nanoparticle which is highly dispersed in the opening nano-scaled windows of the zeolite through redox and self-assembled progress. In the selected electrochemical overpotential range, the Sb6O13@LTA composited modified electrode could complete adsorption and desorption of SDZ through the electron transfer from Sb3+ to Sb5+. As the catalyst is in high stability, the only loss in the whole process of recovering SDZ is a small amount of electric energy. The extra-low detection limit and the removal efficiency of Sb6O13@LTA GCE have been achieved 4.0 pM and 19.3 mg/20 mg (136) SignificanceThe prepared novel sensor has low detection limit, high removal efficiency and high selectivity for sulfadiazine. The Sb6O13@LTA GCE sensor, which is low-cost and has a simple preparation method, exhibits good reproducibility in both seawater and cell fluid. This provides the possibility for wide application in detecting and removing SDZ in water system. (53).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.