Abstract
Platinum (Pt) is well-known as the best-performing catalyst for the hydrogen evolution reaction (HER), but its practical application is severely hindered by its prohibitively high cost and problematic performance in alkaline electrolyte. Herein, we report that the issues of intrinsic activity and cost concern of Pt can be simultaneously addressed by employing a combination of concerted catalysis and nanoengineering strategies. Motivated by our density functional theory (DFT) calculations that the cooperative catalysis between Pt and NiO would lead to a better HER activity in comparison to Pt solely in alkaline solution, we successfully synthesized a Pt/NiO@Ni/NF nanocomposite catalyst by depositing highly dispersed Pt nanoclusters/nanoparticles on a honeycomb-like NiO@Ni film supported on Ni foam (NF). The resulting Pt/NiO@Ni/NF catalyst outperforms the commercial Pt/C catalyst with a high and stable HER activity in alkaline solution and, more impressively, with an economical Pt content as low as ∼0.1 mg cm-2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.