Abstract

AbstractPd@PPy hybrid catalytic materials are synthesized in water via redox polymerization reaction of pyrrole with [Pd(NH3)4Cl2]. The nanocomposites formed are composed of highly dispersed palladium particles which are either zerovalent or easily reducible, and are embedded in spherical polypyrrole globules. A unique combination of high palladium dispersion (NP size: 2.4 nm) and elevated palladium content (35 wt%) is obtained. The components of these novel nanocomposites are characterized by means of FTIR, XPS, XRD, SEM, and TEM microscopy techniques. The process of formation in solution is also monitored using UV‐visible and DLS techniques. The application of these novel hybrid nanomaterials in the palladium‐catalyzed direct arylation of heteroaromatics is reported. High efficiency in C–C bond formation is obtained using these materials. Furans and thiophenes are arylated by using bromoarenes. Pd@PPy nanocomposites can efficiently couple n‐butyl furan and n‐butyl thiophene with bromobenzene and bromoquinoline, as well as with activated or deactivated electron‐poor and electron‐rich functionalized bromoarenes. Thus, a clean reaction process is developed that combines the absence of organic ligand in catalytic reactions and easy recovery of Pd@PPy nanocomposite via simple filtration. Preliminary kinetic and post‐catalysis studies suggest a molecular or colloidal soluble active species. These very active species are efficiently delivered by the nanocomposites and susceptible to a surprisingly uniform back redeposition within the polypyrrole support.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.