Abstract

AbstractOxygen‐regulated Ni‐based single‐atom catalysts (SACs) show great potential in accelerating the kinetics of electrocatalytic CO2 reduction reaction (CO2RR). However, it remains a challenge to precisely control the coordination environment of NiO moieties and achieve high activity at high overpotentials. Herein, a facile carbonization coupled oxidation strategy is developed to mass produce NiO clusters‐decorated NiNC SACs that exhibit a high Faradaic efficiency of CO (maximum of 96.5%) over a wide potential range (−0.9 to −1.3 V versus reversible hydrogen electrode) and a high turnover frequency for CO production of 10 120 h−1 even at the high overpotential of 1.19 V. Density functional theory calculations reveal that the highly dispersed NiO clusters induce electron delocalization of active sites and reduce the energy barriers for *COOH intermediates formation from CO2, leading to an enhanced reaction kinetics for CO production. This study opens a new universal pathway for the construction of oxygen‐regulated metal‐based SACs for various catalytic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.