Abstract

Ultrathin small MoS2 nanosheets exhibit a higher electrocatalytic activity for the hydrogen evolution reaction. However, strong interactions between MoS2 layers may result in aggregation; together with the low conductivity of MoS2, this may lower its electrocatalytic activity. In this paper we present a method that we developed to directly produce solid S, N co-doped carbon (SNC) with a graphite structure and multiple surface groups through a hydrothermal route. When Na2MoO4 was added to the reaction, polymolybdate could be anchored into the carbon materials via a chemical interaction that helps polymolybdate disperse uniformly into the SNC. After a high temperature treatment, polymolybdate transformed into MoS2 at 800 °C for 6 h in a N2 atmosphere at a heating rate of 5 °C/min, owing to S2– being released from the SNC during the treatment (denoted as MoS2/SNC-800-6h). The SNC effectively prevents MoS2 from aggregating into large particles, and we successfully prepared highly dispersed MoS2 in the SNC matrix. Electrochemical characterizations indicate that MoS2/SNC-900-12h exhibits a low onset potential of 115 mV and a low overpotential of 237 mV at a current density of 10 mA/cm2. Furthermore, MoS2/SNC-900-12h also had an excellent stability with only ∼2.6% decay at a current density of 10 mA/cm2 after 5000 test cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.