Abstract
The development of efficient, stable, and cost-effective heterogeneous catalysts for catalytic transfer hydrogenation (CTH) of biomass-derived furfural (FAL) is highly desired. Herein, series of N-doped graphitic carbon embedded CoNi bimetallic alloy nanoparticles were fabricated and used for the CTH of FAL to value-added furfuryl alcohol (FOL) with renewable isopropanol as hydrogen donor. Intrinsic catalytic activity examination indicated the catalytic performance of Nix Coy @NGC (x:y=1 : 3, 1 : 1, 3 : 1) nanocatalysts were sensitive to their chemical compositions. The optimal Ni1 Co1 @NGC nanocatalyst with Ni/Co mole ratio of 1 : 1 afforded a largest FOL yield of 89.3% with nearly full conversion of FAL. The synergistic effect enabled by bimetallic alloys and the abundant N-based Lewis base sites and surface Co-N active species were revealed based on systematic structural characterization, responsible for the excellent catalytic efficiency of bimetallic Ni1 Co1 @NGC nanocatalyst for CTH of FAL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.