Abstract

The conversion of CO2 to methanol with high activity and high selectivity remains challenging owing to the kinetic and thermodynamic limitations associated with the low chemical reactivity exhibited by CO2. Herein, we report a novel Cd/TiO2 catalyst exhibiting a methanol selectivity of 81%, a CO2 conversion of 15.8%, and a CH4 selectivity below 0.7%. A combination of experimental and computational studies revealed that the unique electronic properties exhibited by the Cd clusters supported by the TiO2 matrix were responsible for the high selectivity of CO2 hydrogenation to methanol via the HCOO* pathway at the interfacial catalytic sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.