Abstract

Modern millimeter-wave (mmWave) communication systems for large indoor areas and most outdoor scenarios require high-gain antennas with beam-steering ability to support user mobility or beam switching for reconfigurable backhauling. In this article, two new concepts for the development of highly directional steerable mmWave antennas are proposed and analyzed. The first one is modular antenna array (MAA) technology, which allows the creation of large-aperture, high-gain adaptive antenna arrays in a cost-effective and scalable manner. Two MAA configurations based on the existing phased subarray module are considered and analyzed for mmWave small-cell access and backhauling. The second prospective technology that fulfills the required antenna parameters for mmWave smallcell flexible backhauling is the lens-array antenna (LAA). The combination of the dielectric lens for aperture increasing with only one subarray module with beam-steering capabilities may provide 25?30-dBi total antenna gain with azimuth sector sweeping !45?.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.