Abstract

Despite the high expectation of deformable and see-through displays for future ubiquitous society, current light-emitting diodes (LEDs) fail to meet the desired mechanical and optical properties, mainly because of the fragile transparent conducting oxides and opaque metal electrodes. Here, by introducing a highly conductive nanofibrillated conducting polymer (CP) as both deformable transparent anode and cathode, ultraflexible and see-through polymer LEDs (PLEDs) are demonstrated. The CP-based PLEDs exhibit outstanding dual-side light-outcoupling performance with a high optical transmittance of 75% at a wavelength of 550 nm and with an excellent mechanical durability of 9% bending strain. Moreover, the CP-based PLEDs fabricated on 4 µm thick plastic foils with all-solution processing have extremely deformable and foldable light-emitting functionality. This approach is expected to open a new avenue for developing wearable and attachable transparent displays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.