Abstract

Sodium-ion batteries are being explored as an alternative to the Li-ion batteries, due to the abundance of Na and similar electrochemistry with that of Li. In this study, we report the electrochemical activity of octahedron-like antimony trioxide nanostructures for Na-ion batteries, prepared with the simple hydrothermal oxidation of antimony precursor in alkaline condition. The microstructure reveals the formation of octahedron-like microcrystals with cubic antimony trioxide phase. In Na-ion cells, the antimony trioxide electrode exhibits a reversible specific capacity of 623 mAh g−1 on the first charge and long cycle stability of 200 cycles losing only 9% capacity. The exceptional electrochemical performance achieved by antimony trioxide is owing to the conversion and alloying reactions mechanism, which accelerates the kinetics of the reactions by stabilizing the structure of anode material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.