Abstract

New approaches for the engineering of well-defined, pore modality, and multi-chemical functionality nanocomposites are crucial to generate the next generation of functional materials with recoverable and easy preparation properties. Here, a catalyst and heat free polymerization reaction is exploited and fabricated zwitterionic system around magnetic nanoparticles. N-aminoethyl piperazine propane sulfonate (AEPPS) and dopamine (DA) are introduced as the zwitterionic system, which provided abundant zwitterionic groups (NH2, SO3-, N+) and strong adhesion and various oxidation state properties. And that, the zwitterionic engineering will assemble between AEPPS and DA whereby Schiff base formation or Michael type addition. Whereafter, a series of sophisticated array of microscopic, spectroscopic, and structure techniques verify the formation of highly crosslinking internal zwitterionic architectures, well-defined core-shell structure, and better porosity. The zwitterionic structure-function relationships and striking porous structure are explored in a multi-interaction adsorption assay. The adsorption capacity of the magnetic nanocomposites was 1065.8mg/g. And that, the system exhibited with hydrophilic-hydrophobic activity towards glycoprotein and better performance to bioactive protein (Ig-G) isolation form human whole blood sample. The synergistic enhancement interaction in hydrophilic target enrichment, easy preparation, and soft substrate properties of the AEPPS-DA zwitterionic materials make them intriguing candidates for sustainable biomedical loading and chromatographic separation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call