Abstract

BackgroundWith over 20 parapatric races differing in their warningly colored wing patterns, the butterfly Heliconius erato provides a fascinating example of an adaptive radiation. Together with matching races of its co-mimic Heliconius melpomene, H. erato also represents a textbook case of Müllerian mimicry, a phenomenon where common warning signals are shared amongst noxious organisms. It is of great interest to identify the specific genes that control the mimetic wing patterns of H. erato and H. melpomene. To this end we have undertaken comparative mapping and targeted genomic sequencing in both species. This paper reports on a comparative analysis of genomic sequences linked to color pattern mimicry genes in Heliconius.ResultsScoring AFLP polymorphisms in H. erato broods allowed us to survey loci at approximately 362 kb intervals across the genome. With this strategy we were able to identify markers tightly linked to two color pattern genes: D and Cr, which were then used to screen H. erato BAC libraries in order to identify clones for sequencing. Gene density across 600 kb of BAC sequences appeared relatively low, although the number of predicted open reading frames was typical for an insect. We focused analyses on the D- and Cr-linked H. erato BAC sequences and on the Yb-linked H. melpomene BAC sequence. A comparative analysis between homologous regions of H. erato (Cr-linked BAC) and H. melpomene (Yb-linked BAC) revealed high levels of sequence conservation and microsynteny between the two species. We found that repeated elements constitute 26% and 20% of BAC sequences from H. erato and H. melpomene respectively. The majority of these repetitive sequences appear to be novel, as they showed no significant similarity to any other available insect sequences. We also observed signs of fine scale conservation of gene order between Heliconius and the moth Bombyx mori, suggesting that lepidopteran genome architecture may be conserved over very long evolutionary time scales.ConclusionHere we have demonstrated the tractability of progressing from a genetic linkage map to genomic sequence data in Heliconius butterflies. We have also shown that fine-scale gene order is highly conserved between distantly related Heliconius species, and also between Heliconius and B. mori. Together, these findings suggest that genome structure in macrolepidoptera might be very conserved, and show that mapping and positional cloning efforts in different lepidopteran species can be reciprocally informative.

Highlights

  • With over 20 parapatric races differing in their warningly colored wing patterns, the butterfly Heliconius erato provides a fascinating example of an adaptive radiation

  • Identification of markers tightly linked to color pattern genes We examined 1440 AFLP H. erato polymorphisms using 23 primer combinations (EcoCN/MseCNN)

  • Conservation of gene order between H. erato and B. mori We found evidence for fine-scale synteny between H. erato and B. mori in the 420 kb genomic region linked to the Cr color pattern gene (Figure 5)

Read more

Summary

Introduction

With over 20 parapatric races differing in their warningly colored wing patterns, the butterfly Heliconius erato provides a fascinating example of an adaptive radiation. It is of great interest to identify the specific genes that control the mimetic wing patterns of H. erato and H. melpomene To this end we have undertaken comparative mapping and targeted genomic sequencing in both species. The genus, composed of around 40 species with hundreds of geographic variants, couples color pattern divergence with multiple cases of mimicry-related convergent evolution [2]. Most Heliconius species participate in local Müllerian mimicry associations and, in any one area, the wing color patterns of different aposematic butterfly species converge into a handful (usually six or less) of clearly differentiated mimetic assemblages [5]. The color patterns characterizing many of these mimicry rings often change dramatically every few hundred kilometers This pattern of convergent and divergent evolution in Heliconius is best exemplified by the mimetic relationship between H. erato and H. melpomene. The two species are distantly related within the genus and never hybridize [2,6,7], yet, where they co-occur, local races possess nearly identical wing patterns and have undergone parallel and congruent radiations into over 20 geographic races [5,8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call