Abstract

2D van der Waals (vdW) layered polar crystals sustaining phonon polaritons (PhPs) have opened up new avenues for fundamental research and optoelectronic applications in the mid-infrared to terahertz ranges. To date, 2D vdW crystals with PhPs are only experimentally demonstrated in hexagonal boron nitride (hBN) slabs. For optoelectronic and active photonic applications, semiconductors with tunable charges, finite conductivity, and moderate bandgaps are preferred. Here, PhPs are demonstrated with low loss and ultrahigh electromagnetic field confinements in semiconducting vdW α-MoO3 . The α-MoO3 supports strong hyperbolic PhPs in the mid-infrared range, with a damping rate as low as 0.08. The electromagnetic confinements can reach ≈λ0 /120, which can be tailored by altering the thicknesses of the α-MoO3 2D flakes. Furthermore, spatial control over the PhPs is achieved with a metal-ion-intercalation strategy. The results demonstrate α-MoO3 as a new platform for studying hyperbolic PhPs with tunability, which enable switchable mid-infrared nanophotonic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.