Abstract

Hydrogel electrolytes are an integral part of flexible solid-state supercapacitors. To further improve the low ionic conductivity, large interfacial resistance and poor cycling stability for hydrogel electrolytes, the V4C3T x MXene-enhanced polyvinyl alcohol hydrogel electrolyte was fabricated to enhance its mechanical and electrochemical performance. The high-conductivity V4C3T x MXene (16,465.3Sm-1) bonding transport network was embedded into the PVA-H2SO4 hydrogel electrolyte (PVA- H2SO4-V4C3T x MXene). Results indicate that compared to the pure PVA-H2SO4 hydrogel electrolyte (105.3mScm-1, 48.4%@2,800 cycles), the optimal PVA-H2SO4-V4C3T x MXene hydrogel electrolyte demonstrates high ionic conductivity (133.3mScm-1) and commendable long-cycle stability for the flexible solid-state supercapacitors (99.4%@5,500 cycles), as well as favorable mechanical flexibility and self-healing capability. Besides, the electrode of the flexible solid-state supercapacitor with the optimal PVA-H2SO4-V4C3T x MXene hydrogel as the solid-state electrolyte has a capacitance of 370Fg-1 with almost no degradation in capacitance even under bending from 0° to 180°. The corresponding energy density for flexible device is 4.6Whkg-1, which is twice for that of PVA-H2SO4 hydrogel as the solid-state electrolyte.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.