Abstract

Abstract Conductive organic materials including polymers, small molecules, and carbon nanotubes (CNTs) are a promising alternative to inorganic materials in electronic devices. Conventionally, organic electrodes employing CNTs are designed using functionalization of their surfaces or formation of nanocomposites with a conductive polymer. However, phase separation limits the concentration of CNTs in a polymer matrix, hindering the formation of highly dense CNT networks and leading to poor electrical conductivity. In this paper, we introduce bilayer electrodes comprising poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and single-walled CNTs (SWNTs) chemically modified by HNO3 treatment. Impressive conductivities of 2432 and 2438 S cm−1 are found for the SWNT/PEDOT:PSS (S/P) and PEDOT:PSS/SWNT (P/S) electrodes, respectively. Further, an increase in the work function of the electrodes after HNO3 treatment lowers the hole injection barrier, which facilitates hole injection from pentacene. The smooth surface of PEDOT:PSS also contributes to growth of large pentacene grains; consequently, the field-effect mobility of pentacene-based thin film transistors is 1.88 cm2 V−1 s−1 when the P/S electrode is employed. The metal-free electrodes also exhibit a high optical transparency of 88.7%, which suggests that they have great potential for applications in optoelectronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call