Abstract

High loading of aligned graphene filler is effective for fabricating polymer nanocomposites with drastically improved properties, while practical preparation of such composites remains elusive. This paper reports on a method of preparing polyimide (PI, BPDA/PDA) nanocomposites containing highly loaded graphene fillers that are uniformly aligned parallel to the coating substrate in the PI matrix. The highly aligned graphene/PI film was achieved by infiltrating water-soluble poly(amic acid) ammonium salt (PAAS) into the scaffold of the graphene oxide liquid crystal. After thermal treatment, a freestanding reduced graphene oxide/polyimide (rGO/PI) film was prepared with the imidization of PAAS and reduction of graphene oxide. Owing to the excellent mechanical properties of the infiltrated PI, the hardness and modulus of the rGO/PI film were as high as 0.9 GPa and 9.3 GPa, respectively. In addition, the rGO/PI film was highly conductive, with an electrical conductivity of 446 S/m, because of the well-connected electrical pathways of the highly loaded and aligned graphene sheets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call