Abstract

The rapid growth in demand for lithium-ion batteries that can deliver more energy and power has generated concerns over safety. Aqueous electrolytes are a strong candidate to alleviate this apprehension, however their ability to overcome the “cathodic challenge” is limited due to anion-dominated passivation at the anode. In this work, the recently developed “hybrid aqueous/nonaqueous” electrolyte (HANE) strategy was employed to tune the degree of passivation at the anode in solid polymer electrolytes (SPEs) by using various ionic liquids as the nonaqueous component. Whereas common HANE systems sacrifice ionic conductivity to create a more robust passivation layer at the cathodic limit, the “hybrid aqueous/ionic liquid” SPEs (HAILSPEs) investigated in this work do not. Two HAILSPE systems (H1, H2.5) were fabricated from a blend of polyacrylonitrile (PAN), water, lithium bis(trifluoromethylsulfonyl)imide (LiTFSI), and either triethylsulfonium-TFSI (S2,2,2) or N-methyl-N-propylpyrrolidinium-TFSI (Pyr1,3). These HAILSPE systems demonstrated a remarkable improvement in transport properties compared to their predecessors, achieving room temperature ionic conductivities of up to 5.39 mS/cm. A reduction in apparent activation energy and nearly complete decoupling of ionic transport from polymer chain mobility were found to contribute to this increase. Stable and complete growth of a passivating layer at 2 V vs. Li/Li+ was also observed, which was tuned by changing the ionic liquid. The work presented here provides a potential route for overcoming the “cathodic challenge” in aqueous SPEs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call