Abstract

This work enlightened the synthesis of graphenated-carbon nanotubes sheet (g-CNT) using the floating-catalyst chemical vapor deposition method (FCCVD) for dye-sensitized solar cell (DSSC) application. The carbon injection flow rate in the experiment was varied to 6, 8, and 10 ml/h. The morphological findings revealed that the g-CNT formed a highly conductive network. Excellent conductivity was obtained for the sample g-CNT8 (34.5 S/cm) compared to the sample g-CNT6 (11.2S/cm) and CNT10 (4.76 S/cm). This excellent feature is due to the hybrid structure of the g-CNT8, which creates efficient electron transfer in the materials resulting in higher conductivity. The hybrid structure provides a high surface area that improves conductivity. Therefore, the g-CNT sheet is an excellent candidate to replace the conventional platinum used as a counter electrode (CE) in DSSC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call