Abstract
A versatile and facile synthetic approach to a new class of ionomers with rigid aromatic backbone and pendant perfluorinated sulfonic acid groups is described. Characterization of the prepared polymers has been carefully carried out by 1H and 19F NMR, elemental analysis, intrinsic viscosity, TGA and DSC. It is shown that the perfluorosulfonic acids greatly enhance the proton conductivity of ionomers under high temperature and low humidity conditions. The aromatic ionomers exhibit comparable proton conductivity to Nafion over a wide humidity range at elevated temperatures, while maintaining other outstanding properties of aromatic polymers, e.g. low gas permeability, excellent thermal and chemical stability and good mechanical properties. It is also demonstrated that the maximum power density and current density of the aromatic ionomers are 30% and 43% higher, respectively, than those of Nafion in initial fuel cell tests at 120 °C.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.