Abstract

The present work reports the preparation of a series of novel highly durable imidazolium-decorated anion exchange membranes (AEMs), with 3D network structure, via ultraviolet crosslinking reaction between 1-vinylimidazole and 1,6-hexanedithiol. AEM modified with trimethylamine (TMA) groups (no crosslinking, 45.7%) showed a significantly reduced water uptake within a range of 14.4–23.6% at 80 °C. Due to relatively good alkali-resistant of imidazolium groups and the compact structure stemmed from crosslinking network, the optimum cross-linked AEM (BPPO-Im 0.3) can retard the degradation and exhibits superior alkaline stability in 1.0 M NaOH at 60 °C for over 15 days, compared with TMA modified AEM. In ED application, BPPO-Im 0.3 AEM has a higher NaCl removal ratio of 77.82% than that of commercial AEM-Type II (74.13%) within 3 h experimental time. Accordingly, it shows higher current efficiency (67.43%) and lower energy consumption (1.94 kWh kg−1 NaCl), compared to commercial one (62.83%; 2.05 kWh kg−1). The facile fabrication process and the better-performance are suggestive of that BPPO-Im 0.3 is potentially applicable in ED.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.