Abstract

Graphene aerogel (GA) has shown great promise as reinforcement of polymeric composites with exceptional electrical and mechanical characteristics. Although there has been significant progress in controlling the structure of GAs, no studies have appeared on the enhanced properties of GAs by employing high-quality precursor graphene flakes (GFs). However, the assembly of high-quality GFs is particularly challenging due to their highly hydrophobic and agglomerative nature in aqueous media, and of the few methods available to synthesize high-quality GFs, most produce flakes with very small lateral sizes. Herein, we report the fabrication of highly crystalline GAs using large nonoxidized graphene flakes (NOGFs) prepared by a novel graphite intercalation compound-based method. Bidirectional freeze casting is utilized for aligning NOGFs in two orthogonal directions, vertically and laterally, where the NOGF walls individually function as effective conductive pathways. The as-prepared nonoxidized graphene aerogel (NOGA) exhibits a defect concentration as low as 1.4% of impurity oxygen with an excellent electrical conductivity of 202.9 S/m at a low density of 5.7 mg/cm3. The corresponding NOGA-epoxy composite shows a remarkable electrical conductivity of 122.6 S/m and a fracture toughness of 1.74 MPa·m1/2 at a low filler content of 0.45 vol %.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.