Abstract

Fresnel lens is a kind of lens that can concentrate sunlight up to a level of thousands of suns with small space occupation which is widely used in the research of sunlight concentration and transmission systems via optical fiber. Most studies on the concentrated flux of lenses use experimental methods to measure the flux distribution on the receiver of parabolic trough solar concentrators, solar power towers, and parabolic dish concentrators, while for Fresnel lenses, especially large-aperture Fresnel lenses such as the one in this manuscript, the simulation approach was mostly used. In response to this problem, this study has developed an experimental system for measuring the concentrated flux density of Fresnel lenses. A charge-coupled device (CCD) camera was used to capture the image of spot of large-aperture (968 mm) Fresnel lenses in the CCD camera-based method, and a heat flow meter was used to calibrate the spot brightness image obtained by the CCD camera. Experimental data show that the peak flux of concentrated spot can reach 4.06 MW/m2. This method confirms the simulation results of previous studies that using the rays tracing method, that is, the flux level of the Fresnel lenses can reach 5000 suns. The experimental results demonstrated the CCD camera-based method combined with a heat flow meter is competent in measuring the intensity of flux with a level of 5000 suns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.