Abstract

AbstractHighly concentrated glyme‐based electrolytes are friendly to a series of negative electrodes for potassium‐based batteries, including potassium metal. However, their compatibility with positive electrodes has been rarely explored. In this work, the influence of the molar fraction of potassium bis(trifluoromethanesulfonyl)imide dissolved in glyme on the cycling ability of K/bilayered‐V2O5 batteries has been investigated. At high salt concentration, the interaction between K+ ions with the glyme is strengthened, leading to a limited number of free glyme molecules. Therefore, the anodic decomposition of the electrolyte solvent, as well as the dissolution of the Al current collectors, is effectively suppressed, resulting in the improved cycling ability of the K/bilayered‐V2O5 cells. In these cells, the positive electrode active material exhibits reversible capacities of 93 and 57 mAh g−1 at specific current densities of 50 and 1000 mA g−1, respectively. After 200 charge‐discharge cycles at 500 mA g−1, the cell retains 94 % of the initial capacity. The promising rate performance and capacity retention demonstrate the importance of proper electrolyte engineering for the K/bilayered‐V2O5 batteries, and the good compatibility of highly concentrated glyme‐based electrolytes with positive electrode materials for potassium batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.