Abstract

Cu(I) doping of octahedral MIL-100(Fe) was successfully performed by means of impregnation and consequent reduction under vacuum conditions. Although MIL-100(Fe) adsorbed CO2 better than CO, Cu(I)@MIL-100(Fe) showed selective CO adsorption compared to CO2 owing to π complexation between CO and Cu(I). Effects of Cu(I) loading concentration, activation temperature, and adsorption temperature upon CO/CO2 adsorption properties were systematically investigated. The adsorption behaviors of CO and CO2 on MIL-100(Fe) and Cu(I)@MIL-100(Fe) were well described by the dual-site Langmuir–Freundlich (DSLF) model. Ideal adsorbed solution theory (IAST) was used to predict adsorption isotherms of equimolar CO and CO2 mixtures and to predict CO/CO2 selectivities as a function of bulk pressure. The obtained results showed that 45 wt% Cu(I)-doped MIL-100(Fe) had CO adsorption capacity of 3.10 mmol g−1 and CO/CO2 selectivity of 420 at 298 K and 1 bar. In addition, a large CO working capacity of 1.39 mmol g−1 was observed for 45 wt% Cu(I)-doped MIL-100(Fe) in the pressure range of 10–100 kPa. Cu(I)-doped MIL-100(Fe) thus appears promising as an adsorbent material for effective CO/CO2 separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.