Abstract

Hydrosilylation of C=C double and C≡C triple bonds is one of the most widely used processes in organosilicon chemistry, mostly catalyzed by Pt-based complexes. Herein, the synthesis of a dicationic Zn+2 -based complex with a tripodal tris(2-pyridylmethyl)amine (TPA) ligand is reported which was found to be a highly chemoselective catalyst for hydrosilylation reactions of alkynes. Mechanistic studies revealed that unlike typical Zn-catalyzed hydrosilylation reactions where the key step is the activation of the Si-H bond, this system catalyzes the hydrosilylation reaction through the activation of C≡C triple bonds, which presumably is the reason for its high chemoselectivity. Remarkably, the hydrosilylation of alkynes could be performed in the presence of alkenes and other functional groups that remained intact in this reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.