Abstract

CsPbBr3@Cs4PbBr6 hexagonal NCs with a bright photoluminescence (PL) peak of 456nm are created through the dissolution-recrystallization of CsPbBr3 nanoplatelets. Small CsPbBr3 nanocrystals are encapsulated in hexagonal Cs4PbBr6 during recrystallization to form a core-shell structure and keep high brightness and stability. The recrystallization kinetics is systematically investigated to explore the roles of methyl acetate, oleylamine, and n-hexane. Result further indicates that core/shell NCs remained high PL under a variety of harsh conditions (e.g., light irradiation and heat treatment) because of Cs4PbX6 shell and the controlling of recrystallization. Their initial PL intensity is remained after 4 months of storage under ambient conditions and continuous exposure to UV lamp for 180min. The bright PL is also maintained even treatment at 120°C. To indicate the universality of this synthesis method, CsPbX3@Cs4PbX6 hexagonal NCs with different emission colors are fabricated by changing temperature, solvent viscosity, and precursors (e,g, oleylamine and halogens). These core-shell samples reveal bright and stable green, orange, and red PL. Because of its high stability, the core/shell NCs are dispersed in flexible films to create diverse patterns. The films also exhibit high brightness and excellent stability. This strategy opens a novel avenue for the application of perovskite nanomaterials in the display field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call