Abstract

Rapid and highly sensitive detection of tumor marker (TM) is critical for the early diagnosis and treatment of cancers. Herein, utilizing highly bright and water-stable CsPbBr3 perovskite nanocrystals (NCs) capped with amphiphilic polymer ligand of octylamine-modified polyacrylic acid (OPA) and gold nanoparticles (AuNPs) as reporters, a lateral flow immunoassay (LFIA) strip is developed for fluorescence and colorimetric dual-mode detection of carcinoembryonic antigen (CEA). The prepared CsPbBr3 NCs capped by an amphiphilic polymeric of OPA ligand showed high stability and bright fluorescence. Moreover, the AuNPs immunoprobes were captured with CEA antigen and quench the green fluorescence of CsPbBr3/OPA NCs on the T line due to the inner filter effect (IFE). Therefore, CEA could be quantitative analyzed by the dual-readout of fluorescence and colorimetric signal. The detection limits of CEA can reach as low as 0.023 ng/mL and 0.027 ng/mL for the fluorescence and colorimetric mode, respectively. Good specificity and reproducibility were also demonstrated for this method. Finally, the CsPbBr3/OPA NCs-based LFIA showed good accuracy in detection of CEA level from clinical serum samples. This work firstly enables the application of CsPbBr3 perovskite NCs in a LFIA, displaying great potential in point-of-care clinical diagnosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call