Abstract

Highly branched PdP nanosheets (NSs) rich in defects and with a thickness of ∼3.2 nm were synthesized, for the first time, via a nanoconfined attachment growth mechanism inside assembled lamellar micelles. Owing to the synergistic structural (being a highly branched, ultrathin, and defect-rich material) and compositional (P-alloyed) advantages, the PdP NSs exhibited remarkable electrocatalytic activity (3.2 A mgPd-1), a low reaction activation energy (16.0 kJ mol-1), good CO anti-poisoning ability, and electrocatalytic stability during the ethanol oxidation reaction (EOR) in alkaline conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.