Abstract

We present experimental realization of elliptical-hole rectangular lattice photonic crystal fibres fabricated from multi-component glass. The photonic cladding has a lattice constant 2.17 μ and 3.72 μ for main axis, respectively and elliptical holes with ellipticity 2.14. The rectangular lattice is chosen to obtain two-fold geometry and to increase the global asymmetry of photonic structure, which enhance birefringence of fibre. Rectangular lattice allows also a better control of elliptical air holes uniformity during fabricating process. Fabricated fibres have a cladding with a rectangular cross-section. It allows for easy identification of the fibre's principal axes and orientation of the fibre with respect to directional measured perturbation like axial stress, bending force in sensor applications. Using a full vector plane-wave expansion method an influence of structure parameters such as ellipticity of air holes and aspect ratio of rectangular lattice on birefringence and modal properties of the fibres are studied. Potential applications of the fibres are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call