Abstract

A new scheme of highly birefringent fiberized slot waveguide (FSW) by post-processing a non-birefringent circular microfiber is proposed for polarimetric interference sensors with ultrasmall sensor heads (tens of micrometers). The different sensing properties of an FSW polarimetric interferometer based on a typical fiber loop mirror are investigated and discussed in detail for refractive index, temperature, and strain measurement. The sensitivity can achieve a high level of >;5×104 nm/refractive index unit (RIU), >;5 nm/°C, and ~1 pm/μe for refractive index, temperature, and strain sensing, respectively. Moreover, its strain sensitivity has a large tuning range from negative to positive, and can be used as an ultracompact and highly efficient strain compensator. Together with its high birefringence, unique geometry, and extremely small size, FSW presents wide potential applications in physical, biological and/or chemical sensing areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.