Abstract

Applying conventional printing technologies to fabricate large-area flexible bulk heterojunction (BHJ) solar cells is of great interest. Achieving this task requires (i) large tolerance of the maximum photoconversion efficiency (PCE) to the film thickness, (ii) fast hole transport in both the thickness and lateral directions of the BHJ layer, and (iii) improved stability against bending and heat. This paper demonstrates that a P3HT:PCBM BHJ layer made of long P3HT nanofibrils of almost 100% crystallinity can be an excellent approach to achieve large-area printed solar cells. We applied a cool-and-heat (C&H) process with a P3HT/PCBM m-xylene solution to generate P3HT:PCBM nanofibril composite films. We found that the hole transport of the nanofibril composite was 2.6 times faster in the thickness direction and 6.5 times more conductive in the in-plane direction compared with conventionally annealed composites. The fast hole transport in the thickness direction led to negligible dependence of the PCE on the...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.