Abstract

AbstractHuman joints have respective ranges of motion and joint forces corresponding to each kind of joint; this necessitates considerations of the characteristics of human joints to fabricate wearable strain sensors conformable to the human body, and capable of precisely monitoring complex motions of the human body. In the present study, the “all textile‐based highly stretchable structure” that is capable of precisely sensing motions (folding and rotation) of the human joints (finger, wrist, elbow, spine, and knee) is fabricated by optimizing patterns (straight, blind, and zigzag) of conductive yarns employed as the conductive part of the strain sensor, and several textile substrates (braided elastic fabric, knit fabric, and woven fabric), having preferable elasticity and conformability employed for the fabrication of strain sensors suitable for human joints. In particular, the technology, enabling the prestraining of textile substrate, is exploited to fabricate a strain sensor that is capable of outputting selective signals corresponding to the folding motion of the spinal joint over a predetermined angle of motion, and the gait pattern of the wearer of the sensor, attached to his or her knee joint doing folding and rotational motions, is analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call