Abstract

Thermogalvanic hydrogels have been quickly developed and are widely used in thermal energy harvesting. However, the freezing behaviors of thermogalvanic hydrogels at subzero temperatures greatly limit their practical applications. Herein, we design an antifreezing thermogalvanic hydrogel based on [Fe(CN)6]3-/4- ions for thermoelectric power generation in ultralow temperature environments. The antifreezing thermogalvanic hydrogels show excellent flexibility at -80 °C owing to the hydrogen bonding between ethylene glycol and water molecules. Even after 500 cyclic tensile strains, the thermogalvanic hydrogels can still maintain excellent mechanical stability, and the Seebeck coefficient is as high as 1.43 mV/K, corresponding to a large retention rate of ∼95%. Moreover, we demonstrate a wearable thermoelectric shoe based on antifreezing thermogalvanic hydrogels for harvesting human thermal energy in a simulated winter environment of -30 °C, and the electricity can drive a green LED. This work provides important guidance for the design and optimization of antifreezing thermogalvanic hydrogels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call