Abstract

By means of first principles density functional theory, we investigate the properties of the TiN(001)/fcc Fe(111) and TiN(001)/bcc Fe(110) interfaces. We demonstrate that along certain directions Fe slides with negligible energy barriers against TiN at both interfaces, whereas sliding along other directions is involved with significant energy barriers. The interface between bcc Fe and TiN has a low energy barrier for sliding along the [110] direction of the TiN lattice, as does sliding along the [010] direction at TiN(001)/fcc Fe(111). For fcc Fe on TiN, a large energy barrier is found for sliding along the [100] direction of the TiN lattice. We show that this phenomenon and the stability of these interfaces are determined by the interplay between N–Fe bonding and Ti–Fe antibonding interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.