Abstract

We prepared Cs2Cu3(SeO3)4·2H2O composed of Cu2+ ions at square-planar coordination sites and characterized its structural and magnetic properties, to show that Cs2Cu3(SeO3)4·2H2O is a ferrimagnet exhibiting a highly anisotropic 1/3-magnetization plateau. This unprecedented anisotropy in a magnetization plateau is the consequence of three effects, namely, the orthogonal arrangements of the corner-sharing CuO4 square planes, the nearest-neighbour antiferromagnetic exchange, and the anisotropic g-factor of the Cu2+ ions at square-planar coordination sites. By analyzing the topology of magnetic bonding, we found why magnetic plateaus are observed only for certain ferrimagnets and antiferromagnets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call