Abstract
Random and highly aligned bead-free chitosan nanofibers (NFs) were successfully prepared via electrospinning by keeping the applied voltage (22 kV), flow rate (0.4 mL h−1), needle diameter (0.8 mm), and needle to collector distance (100 mm) constant while varying the solution concentration and collector rotation speed. No electrospinning was observed for lower solution concentrations, i.e., 1–3 wt% (w/v), whereas a decrease in the number and size of beads and microspheres, and bead-free NFs were obtained when the concentration of solution was increased from 4 to 6 wt%. Increase in the polymer concentration increased the solution viscosity (from 3.53 to 243 mPa s) and conductivity (from 29.80 to 192.00 μs cm−1) to critical values, which led to beadless NFs. The optimized conditions (i.e., concentration of solution 6 wt%, applied electrical potential 22 kV, flow rate 0.4 mL h−1, needle diameter 0.8 mm, and needle to collector distance 100 mm) were further used for the alignment of chitosan NFs. The alignment of the NFs increased from 35.6 to 94.4 % and the diameter decreased from 163.9 to 137.4 nm as the rotation speed of the cylindrical collector drum was increased from 2.09 to 21.98 m s−1. The aligned and small diameter chitosan NFs might find potential applications in biomedical, environmental, solar fuel cell applications, etc. Several target devices and polymer systems in the literature have been used to obtain aligned NFs; however, almost no work has been reported on individual chitosan alignment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.